Part Number Hot Search : 
2SC33 AA118 N751K P390R EE1916 M8192A AD7545SE K2401F1
Product Description
Full Text Search
 

To Download LTC1929 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LTC3734 Single-Phase, High Efficiency DC/DC Controller for Intel Mobile CPUs
FEATURES

DESCRIPTIO
Wide Input Voltage Range: 4V to 30V 1% Output Voltage Accuracy 6-Bit IMVP-IV VID Code: VOUT = 0.7V to 1.708V Intel Compatible Power Saving Mode (PSIB) Power Good Output with Adaptive Masking Lossless Voltage Positioning Resistor Programmable VOUT at Boot-Up and Deeper Sleep State Resistor Programmable Deep Sleep Offset Programmable Fixed Frequency: 210kHz to 550kHz Adjustable Soft-Start Current Ramping Foldback Output Current Limit Short-Circuit Shutdown Timer with Defeat Option Overvoltage Protection Available in 32-Lead 5mm x 5mm x 0.8mm (Profile) QFN Package
The LTC(R)3734 is a single-phase synchronous step-down switching regulator controller that drives all N-channel power MOSFETs in a constant frequency architecture. The output voltage is programmable by six VID bits during normal operation and by external resistors during initial boot-up and deeper sleep state. The LTC3734 drives its output stage at frequencies up to 550kHz. Powerful onchip gate drivers eliminate the need for external gate driver ICs, thus simplifying the design. An Intel compatible PSIB input is provided to select between two modes of operation. Fully enhanced synchronous mode achieves a very small output ripple and very fast transient response while power saving mode realizes very high efficiency. OPTI-LOOP(R) compensation allows the transient response to be optimized for a wide range of output capacitance and ESR values. The LTC3734 is available in a small 5mm x 5mm QFN package. For 2-phase applications refer to the LTC3735.
, LTC and LT are registered trademarks of Linear Technology Corporation. OPTI-LOOP is a registered trademark of Linear Technology Corporation.
APPLICATIO S

Mobile and Desktop Computers Internet Servers
TYPICAL APPLICATIO
MCH_PG DPRSLPVR STP_CPUB PSIB FREQSET 6-BIT VID VID5-VID0
TG SW BG PGND SENSE + SENSE -
M1
0.8H D1
0.002
M2
100pF
RC 3k CC 680pF
0.1F
PGOOD LTC3734 RBOOT ITH RDPRSLP RUN/SS RDPSLP SGND VOA+ OAOUT VOA-
12.7k 56.2k 1.27M
13.3k
13.3k
1.27M
4.5V TO 7V 4.7F BAT54A
PVCC BOOST 0.47F SW
SVCC
4.5V TO 7V 0.1F
3734 F01
Figure 1. High Current Step-Down Converter
3734f
U
CIN 10F 35V x4 VIN 5V TO 24V
U
U
+
COUT 270F 2V x3
VOUT 0.7V TO 1.708V 20A
1
LTC3734
ABSOLUTE
(Note 1)
AXI U RATI GS
PACKAGE/ORDER I FOR ATIO
DPRSLPVR FREQSET MCH_PG PGOOD BOOST SVCC PSIB VFB
Input Supply Voltage (PVCC, SVCC) ............. 7V to - 0.3V Topside Driver Voltages (BOOST) ..............38V to - 0.3V Switch Voltage (SW) ....................................32V to - 5V Boosted Driver Voltages (BOOST-SW) ........7V to - 0.3V DPRSLPVR, STP_CPUB, MCH_PG, PGOOD, RDPRSLP, RDPSLP, RBOOT Voltages ........5V to - 0.3V RUN/SS, FREQSET, PSIB Voltages ..............7V to - 0.3V VID0-VID5 Voltages .....................................5V to - 0.3V VFB Voltage ................................................. 2V to - 0.3V VOA+, VOA- Voltage ................................... 3.6V to -0.3V Peak Gate Drive Current <1s (TG, BG) ..................... 5A Operating Ambient Temperature Range (Note 2) .................................................. - 40C to 85C Junction Temperature (Note 3) ............................. 125C Storage Temperature Range ................. - 65C to 125C Reflow Peak Body Temperature ............................ 245C
32 31 30 29 28 27 26 25 VOA+ 1 VOA- 2 OAOUT 3 STP_CPUB 4 SGND 5 SENSE + 6 SENSE - 7 RDPRSLP 8 9 10 11 12 13 14 15 16
RBOOT VID0 VID1 VID2 RDPSLP RUN/SS ITH NC
24 TG 23 SW 22 PVCC 21 BG 33 20 PGND 19 VID5 18 VID4 17 VID3
UH PACKAGE 32-LEAD PLASTIC QFN TJMAX = 125C, JA = 34C/W EXPOSED PAD (PIN 33) IS GROUND MUST BE SOLDERED TO PCB
ORDER PART NUMBER LTC3734EUH
UH PART MARKING 3734
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS
SYMBOL Reference VSENSEMAX VLOADREG PARAMETER Regulated Feedback Voltage Maximum Current Sense Threshold Output Voltage Load Regulation Main Control Loop
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VPVCC = VSVCC = 5V, VRUN/SS = 5V unless otherwise noted.
CONDITIONS ITH Voltage = 0.5V; Measured at VFB (Note 4) ITH Voltage = Max; VCM = 1.7V (Note 4) Measured in Servo Loop, ITH Voltage: 1.2V to 0.7V Measured in Servo Loop, ITH Voltage: 1.2V to 2V VPVCC = VSVCC = 4.5V to 7V 0.57 VPSIB = 0V Measured with Respect to VFB = 0.6V ITH = 1.2V, Sink/Source 25A (Note 4) ITH = 1.2V, (gm * ZL; No Ext Load) (Note 4) VID = 010110, ITH = 0.5V (0C - 85C) VID = 010110, ITH = 0.5V (Note 2)

MIN
TYP 0.600
MAX
UNITS V
59
72 0.1 - 0.1 0.02 0.6 - 0.5 0.66 6 3 1.356 1.356
85 0.5 - 0.5 0.1 0.63 -1 0.68 7.5 1.370 1.376
VREFLNREG VPSIB IPSIB VOVL gm gmOL VACTIVE
Reference Voltage Line Regulation Forced Continuous Threshold Forced Continuous Current Output Overvoltage Threshold Transconductance Amplifier gm Transconductance Amplifier Gain Output Voltage in Active Mode
0.64 4.5 1.342 1.336
mmho V/mV V V
2
U
mV % % %/V V A V
3734f
W
U
U
WW
W
LTC3734
ELECTRICAL CHARACTERISTICS
SYMBOL IQ PARAMETER Input DC Supply Current Normal Mode Shutdown Undervoltage RUN/SS Reset Soft-Start Charge Current RUN/SS Pin ON Threshold RUN/SS Pin Latchoff Threshold RUN/SS Discharge Current Shutdown Latch Disable Current Total Sense Pins Source Current Maximum Duty Factor Top Gate Transition Time: Rise Time Fall Time Bottom Gate Transition Time: Rise Time Fall Time (Note 5) VRUN/SS = 0V VCC Lowered Until the RUN/SS Pin is Pulled Low VRUN/SS = 1.9V VRUN/SS Rising VRUN/SS Rising from 3V VRUN/SS Ramping Negative Soft Short Condition VFB = 0.375V, VRUN/SS = 4.5V VFB = 0.375V, VRUN/SS = 4.5V VSENSE - = VSENSE + = 0V In Dropout (Note 6) CLOAD = 3300pF CLOAD = 3300pF (Note 6) CLOAD = 3300pF CLOAD = 3300pF - 85 95 -5 3.2 -2.3 1.0 2 20 3.7 -1.5 1.5 3.9 3.2 -1.5 1.5 - 60 98.5 30 40 60 50 50 60 100 5.33 (Note 8)
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VPVCC = VSVCC = 5V, VRUN/SS = 5V unless otherwise noted.
CONDITIONS MIN TYP MAX 3 100 4.2 - 0.8 1.9 UNITS mA A V A V V V A 5 A A % 90 90 90 90 ns ns ns ns ns ns ns k 0.25 0.3 0.7 1 VFREQSET = 0V VFREQSET = 1.2V VFREQSET = 0V VFREQSET 2.4V IPGOOD = 2mA VPGOOD = 5V VFB with Respect to Set Output Voltage VFB Ramping Negative VFB Ramping Positive -7 7 100 - 10 10 110 15 320 190 490 -2 355 210 550 0.1 -1 390 240 610 0.3 1 - 13 13 120 % V V A A kHz kHz kHz V A % % s cycles
UVR IRUN/SS VRUN/SS VRUN/SSLO ISCL ISDLHO ISENSE DFMAX TG tr TG tf BG tr BG tf TG/BG t1D BG/TG t2D tON(MIN) RATTEN ATTENERR VIDTHLOW VIDTHHIGH VIDLEAK Oscillator IFREQSET fNOM fLOW fHIGH VPGL IPGOOD VPG
VRUN/SSARM RUN/SS Pin Latchoff Arming
Top Gate Off to Bottom Gate On Delay CLOAD = 3300pF (Note 6) Synchronous Switch-On Delay Time Bottom Gate Off to Top Gate On Delay CLOAD = 3300pF (Note 6) Top Switch-On Delay Time Minimum On-Time VID Top Resistance Resistive Divider Error VID0 to VID5 Logic Threshold Low VID0 to VID5 Logic Threshold High VID0 to VID5 Leakage FREQSET Input Current Nominal Frequency Lowest Frequency Highest Frequency PGOOD Voltage Low PGOOD Leakage Current PGOOD Trip Level - 0.25 Tested with a Square Wave (Note 7)
VID Parameters
PGOOD Output
tMASK tDELAY
PGOOD Mask Timer MCH_PG Delay Time
3734f
3
LTC3734
ELECTRICAL CHARACTERISTICS
SYMBOL IB VOS CM CMRR ICL AVOL GBP SR VO(MAX) PARAMETER Input Bias Current Input Offset Voltage Magnitude Common Mode Input Voltage Range Common Mode Rejection Ratio Output Source Current Open-Loop DC Gain Gain-Bandwidth Product Slew Rate Maximum High Output Voltage Operational Amp
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VPVCC = VSVCC = 5V, VRUN/SS = 5V unless otherwise noted.
CONDITIONS MIN TYP 15 VOA+ = VOA- 1.2V, IOUT = 1mA 0 IOUT = 1mA IOUT = 1mA IOUT = 1mA RL = 2k IOUT = 1mA 46 10 70 35 30 2 5 PVCC - 1.2PVCC - 0.9 0.8 MAX 200 5 PVCC - 1.4 UNITS nA mV V dB mA V/mV MHz V/s V
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: The LTC3734E is guaranteed to meet performance specifications from 0C to 70C. Specifications over the - 40C to 85C operating temperature range are assured by design, characterization and correlation with statistical process controls. Note 3: TJ is calculated from the ambient temperature TA and power dissipation PD according to the following formula: LTC3734EUH: TJ = TA + (PD * 34C/W)
Note 4: The LTC3734 is tested in a feedback loop that servos VITH to a specified voltage and measures the resultant VFB. Note 5: Dynamic supply current is higher due to the gate charge being delivered at the switching frequency. See Applications Information. Note 6: Rise and fall times are measured using 10% and 90% levels. Delay times are measured using 50% levels. Note 7: The minimum on-time condition corresponds to the on inductor peak-to-peak ripple current 40% IMAX (see Minimum On-Time Considerations in the Applications Information section). Note 8: The ATTENERR specification is in addition to the output voltage accuracy specified at VID code = 010110.
TYPICAL PERFOR A CE CHARACTERISTICS
Active Mode Efficiency (VID = 1.186V, PSI = 0) (Figure 9)
100
90
90 EFFICIENCY (%) VIN = 20V 80
VIN = 7.5V EFFICIENCY (%)
80
EFFICIENCY (%)
70
60
60
0
2
4 IOUT (A)
6
4
UW
8
3735 GO1
Deeper Sleep Mode Efficiency (Figure 9)
100
Efficiency vs Input Voltage (Figure 9)
IOUT = 20A VOUT = 1.6V
VIN = 7.5V
90
VIN = 20V
80
70
70
10
60 0.01
0.1 IOUT (A)
1
10
3734 G02
50
5
15 10 INPUT VOLTAGE (V)
20
3734 G03
3734f
LTC3734 TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs SVCC Voltage and Mode
2500 ON 2000 SUPPLY CURRENT (A)
1500
VSENSE (mV)
VSENSE (mV)
0 20 40 60 DUTY FACTOR (%) 80 100
3734 G05
1000
500
SHUTDOWN 0 4 5 6 SVCC VOLTAGE (V) 7
3734 G04
Maximum Current Sense Threshold vs VRUN/SS (Soft-Start)
80 70 60 VSENSE (mV)
72
VSENSE(CM) = 1.25V
VSENSE (mV)
VSENSE (mV)
50 40 30 20 10 0 0 1 2 3 VRUN/SS (V) 4 5
3734 G07
Load Regulation (without AVP)
0.0 VPSIB = 5V VIN = 15V FIGURE 1 100
NORMALIZED VOUT (%)
-0.1
-0.2
ISENSE (A)
-0.3
-0.4
0
5
UW
Maximum Current Sense Threshold vs Duty Factor
75
80 70 60
Maximum Current Sense Threshold vs Percent of Nominal Output Voltage (Foldback)
50
50 40 30 20 10
25
0
0
50 0 100 25 75 PERCENT OF NOMINAL OUTPUT VOLTAGE (%)
3734 G06
Maximum Current Sense Threshold vs Sense Common Mode Voltage
76 90 80 70 60 50 40 30 20 10 64 0 -10 -20 60 0 1 3 4 2 COMMON MODE VOLTAGE (V) 5
3734 G08
Current Sense Threshold vs ITH Voltage
68
-30
0
0.5
1
1.5 VITH (V)
2
2.5
3734 G09
SENSE Pins Total Source Current
50
0
-50
15 10 LOAD CURRENT (A)
20
25
3734 G10
-100
0
2
4
6
3734 G12
VSENSE COMMON MODE VOLTAGE (V)
3734f
5
LTC3734 TYPICAL PERFOR A CE CHARACTERISTICS
Maximum Current Sense Threshold vs Temperature
78 1.8 1.6 76
RUN/SS CURRENT (A)
VSENSE (mV)
74
72
70
68 -50
-25
50 25 0 75 TEMPERATURE (C)
Current Sense Pin Input Current vs Temperature
-12
CURRENT SENSE INPUT CURRENT (A)
VOUT = 1.6V -11
FREQUENCY (kHz)
600 500 400 300
VFREQSET = 2.4V
SHUTDOWN LATCH THRESHOLDS (V)
-10
-9
-8
-7 -50 -25
50 25 0 75 TEMPERATURE (C)
6
UW
100
3734 G13
RUN/SS Current vs Temperature
Load Step (Figure 9)
1.4 1.2 1.0 0.8 0.6 0.4 0.2
1.2V VOUT 100mV/DIV 1.116V
12A IOUT 4A/DIV 2.5A 20s/DIV
1530 G13
125
0 -50
-25
0 25 50 75 TEMPERATURE (C)
100
125
3734 G14
Oscillator Frequency vs Temperature
700
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
VRUN/SS Shutdown Latch Thresholds vs Temperature
LATCH ARMING
LATCHOFF THRESHOLD
VFREQSET = 1.2V
VFREQSET = 0V 200 100 - 50 - 25
100
125
50 25 75 0 TEMPERATURE (C)
100
125
0 -50
-25
0 25 50 75 TEMPERATURE (C)
100
125
3734 G16
3734 G17
3734 G19
3734f
LTC3734
PI FU CTIO S
VOA+, VOA- (Pins 1, 2): Inputs to the Internal Operational Amplifier. OAOUT (Pin 3): Output of the Internal Operational Amplifier. STP_CPUB (Pin 4): Deep Sleep State Input. When the signal to this pin is low, the voltage regulator enters deep sleep state and its output voltage is a certain percentage lower than the VID commands. This offset percentage is set by the resistor connected to the RDPSLP pin. When the signal to this pin is high, the voltage regulator exits deep sleep state. SGND (Pin 5): Signal Ground. All small-signal components and compensation components should connect to this ground which, in turn, connects to PGND at one point. SENSE+ (Pin 6): The (+) Input to the Differential Current Comparator. The ITH pin voltage and built-in offsets between SENSE- and SENSE+ pins in conjunction with RSENSE set the current trip threshold. SENSE- (Pin 7): The (-) Input to the Differential Current Comparator. RDPRSLP (Pin 8): Deeper Sleep State Resistor Pin. Connect a resistor from this pin to VOA+. This resistor in conjunction with the RDPSLP resistor sets the output voltage of the regulator in deeper sleep state. RDPSLP (Pin 9): Deep Sleep Resistor Pin. Connect a resistor from this pin to VOA+. This resistor sets the percentage offset of output voltage in deep sleep state. RUN/SS (Pin 10): Combination of Soft-Start, Run Control Input and Short-Circuit Detection Timer. A capacitor to ground at this pin sets the ramp time to full current output. Forcing this pin below 1V causes the IC to shut down all internal circuitry. All functions are disabled in shutdown. ITH (Pin 11): Error Amplifier Output and Switching Regulator Compensation Point. The current comparator's threshold increases with this control voltage. The normal voltage range of this pin is from 0V to 2.4V RBOOT (Pin 12): Boot-Up Resistor Pin. Connect a resistor from this pin to VOA+. This resistor sets the output voltage during the initial boot-up. VID0-VID5 (Pins 13, 14, 15, 17, 18, 19): VID Control Logic Input Pins. NC (Pin 16): Not Connected. PGND (Pin 20): Driver Power Ground. Connect to sources of bottom N-channel MOSFETs and the (-) terminals of CIN. BG (Pin 21): High Current Gate Drive for Bottom N-Channel MOSFETs. Voltage swing at this pin is from ground to PVCC. PVCC (Pin 22): Power Supply Pin. The on chip gate drivers are powered from this voltage source. Decouple to PGND with a minimum of 4.7F X5R/X7R ceramic capacitor placed directly adjacent to the IC.
U
U
U
3734f
7
LTC3734
PI FU CTIO S
SW (Pin 23): Switch Node Connection to Inductor. Voltage swing at this pin is from a Schottky diode (external) voltage drop below ground to VIN. TG (Pin 24): High Current Gate Drive for Top N-Channel MOSFETs. This is the output of a floating driver with a voltage swing equal to PVCC superimposed on the switch node voltage SW. BOOST (Pin 25): Bootstrapped Supply to the Topside Floating Driver. External capacitor is connected between the BOOST and SW pins, and a Schottky diode is connected between the BOOST and PVCC pins. PGOOD (Pin 26): Power Good Indicator Output. This pin is open drain when output is within 10% of its set point. When output is not within the 10% window, this pin is pulled to ground. An internal timer watches over VID, state transitions, overvoltage or undervoltage conditions, then masks PGOOD from going low for 110s. MCH_PG (Pin 27): MCH Power Good Input. Output voltage remains VBOOT for 15 clock cycles after the assertion of MCH_PG. This delay is only sensitive to the rising edge of the MCH_PG logic signal. VFB (Pin 28): Input to the error amplifier that compares the feedback voltage to the internal 0.6V reference voltage. SVCC (Pin 29): Signal Power Pin. The internal control circuits are powered from this voltage source. DPRSLPVR (Pin 30): Deeper Sleep State Input. When the signal to this pin is high, the voltage regulator enters deeper sleep state and its output is determined by the parallel resistor value of RDPRSLP and RDPSLP. When the signal is low, the voltage regulator exits deeper sleep state. FREQSET (Pin 31): Frequency Set Pin. Apply a DC voltage between 0V and 5V to set the operating frequency of the internal oscillator. This frequency is the switching frequency of the controller. PSIB (Pin 32): Power Status Indicator Input. When the signal to this pin is high, the controller operates in fully synchronous switching mode for fastest transient and lowest ripple. When the signal is low, controller enters power saving mode, providing high efficiency at light load. Exposed Pad (Pin 33): Signal Ground. Must be soldered to the PCB.
8
U
U
U
3734f
LTC3734
FU CTIO AL DIAGRA
R3
MCH_PG
FREQSET OSCILLATOR
CLK COMPOSITE PG BOOST STP_CPUB DPRSLPVR VID CHANGE 110s BLANKING - + 0.66V VFB 0.54V S R Q Q PVCC DB VIN
PGOOD
RUN - + VOA+
A1 + R2 VOA- - I1 R1 OAOUT 5.33(VFB) SLOPE COMP + - 0.60V PSI - EA + OV 5V SVCC 1.5A SGND 6V DPRSLPVR MD RATTEN 5.33k
SHDN RST 5.33(VFB)
3V 0.5A PSIB
VREF
+
RUN SOFTSTART
VID CHANGE +
RUN
RVID VID0 VID1 VID2 VID3 VID4 VID5
3735 FD
W
R4 RDPSLP STP_CPUB R6 RDPRSLP DPRSLPVR R5 RBOOT DELAY MD DROP OUT DET TOP BOT PSI SW SWITCH LOGIC BOT PVCC BG PGND DPRSLPVR SHDN PVCC I2 SVCC
+ 36k SENSE - 36k SENSE
U
U
TG
CB D1
+
CIN
TOP ON
COUT
+
VOUT
PVCC
RSENSE L
- +
-
++
-
- +
54k
54k 2.4V VFB 0.60V VFB
+ - 0.66V ITH CC
CC2 RUN/SS
RC
CSS 1.5V
-
6-BIT VID DECODER
3734f
9
LTC3734
OPERATIO
Main Control Loop The LTC3734 uses a constant frequency, current mode step-down architecture. During normal operation, the top MOSFET is turned on when the clock sets the RS latch, and turned off when the main current comparator, I1, resets the RS latch. The peak inductor current at which I1 resets the RS latch is controlled by the voltage on the ITH pin, which is the output of error amplifier EA. The VFB pin receives the voltage feedback signal, which is compared to the internal reference voltage by the EA. When the load current increases, it causes a slight decrease in EA inverting input node relative to the 0.6V reference, which in turn causes the ITH voltage to increase until the average inductor current matches the new load current. After the top MOSFET has turned off, the bottom MOSFET is turned on until either the inductor current starts to reverse, as indicated by current comparator I2, or the beginning of the next cycle. The top MOSFET driver is biased from a floating bootstrap capacitor CB, which normally is recharged during each off cycle through an external diode when the top MOSFET turns off. As VIN decreases to a voltage close to VOUT, the loop may enter dropout and attempt to turn on the top MOSFET continuously. The dropout detector detects this and forces the top MOSFET off for about 500ns every sixth cycle to allow CB to recharge. The main control loop is shut down by pulling the RUN/ SS pin low. Releasing RUN/SS allows an internal 1.5A current source to charge soft-start capacitor CSS. When CSS reaches 1.5V, the main control loop is enabled with the internal ITH voltage clamped at approximately 30% of its maximum value. As CSS continues to charge, the internal ITH voltage is gradually released allowing normal, full-current operation. Frequency Programming The switching frequency of the LTC3734 is determined by the DC voltage at the FREQSET pin. A DC voltage ranging from 0V to 2.4V moves the internal oscillator frequency from 210kHz to 550kHz.
10
U
(Refer to Functional Diagram)
Low Current Operation (PSIB) The PSIB pin selects between two modes of operation. When PSIB is above 0.6V, the controller operates in full synchronous switching mode. Bottom driver (BG) is kept on once it is turned on until the oscillator sets the RS latch. The inductor current can therefore go from output back to input power supply and could potentially boost the input supply to dangerous voltage levels--BEWARE! This mode of operation is also of lower efficiency and much current can circulate between input and output. However, this mode provides constant switching frequency. When PSIB is below 0.6V, the bottom driver (BG) is turned off if the inductor current starts to reverse. This mode of operation prevents current going from output back to input and eliminates the conduction power loss related to circulating current. The circuit may skip switching cycles at very light load conditions. Output Voltage at Start-Up and at Deeper Sleep State Under normal conditions, the output voltage of the regulator is commanded by six VID bits, except at start-up and at deeper sleep state. At start-up, the RUN/SS capacitor starts to charge up and its voltage limits the inrush current from the input power source. This linearly rising current limit provides a controlled output voltage rise. During start-up, the VID command is ignored and the output set point is determined by the value of the resistor connected to the RBOOT pin. The VID bits continue to be ignored for 15 switching cycles after the completion of the following two conditions: 1) output voltage has risen up and has regulated 2) MCH_PG signal has asserted. After 15 switching cycles, output voltage is fully commanded by VID bits. In deeper sleep state, the VID command is also ignored and the output set point is determined by the parallel value of the resistors at the RDPRSLP pin and RDPSLP pin.
3734f
LTC3734
OPERATIO
Operational Amplifier and Deep Sleep Offset The internal operational amplifier provides a programmable output offset at deep sleep state (when the STP_CPUB signal is low). The offset percentage is programmed by the resistor from RDPSLP to VOA+ and the resistor from output to VOA+. The amplifier has an output slew rate of 5V/s and is capable of driving capacitive loads with an output RMS current typically up to 40mA. The open-loop gain of the amplifier is >120dB and the unity-gain bandwidth is 2MHz. Output Overvoltage Protection An overvoltage comparator, OV, guards against transient overshoots (>10%) as well as other more serious conditions that may overvoltage the output. In this case, the top MOSFET is turned off and the bottom MOSFET is turned on until the overvoltage condition is cleared. Power Good The PGOOD pin is connected to the drain of an internal N-channel MOSFET. The MOSFET turns on when the output voltage is not within 10% of its nominal set point. When the output voltage is within 10% of its nominal set point, the MOSFET turns off and PGOOD is high impedance. PGOOD monitors the VBOOT voltage when MCH_PG is not asserted. During VID, deep sleep or deeper sleep
U
(Refer to Functional Diagram)
transitions, PGOOD is masked from going low for 110s, preventing the system from resetting during CPU mode changes. When VID bits, STP_CPUB or DPRSLPVR signals change again after a previous transition, but before the timer expires, the internal timer resets. Short-Circuit Detection The RUN/SS capacitor is used initially to limit the inrush current from the input power source. Once the controller has been given time, as determined by the capacitor on the RUN/SS pin, to charge up the output capacitors and provide full-load current, the RUN/SS capacitor is then used as a short-circuit timeout circuit. If the output voltage falls to less than 70% of its nominal output voltage the RUN/SS capacitor begins discharging assuming that the output is in a severe overcurrent and/or short-circuit condition. If the condition lasts for a long enough period as determined by the size of the RUN/SS capacitor, the controller will be shut down until the RUN/SS pin voltage is recycled. This built-in latchoff can be overidden by providing a current >5A to the RUN/SS pin. This current shortens the soft-start period but also prevents net discharge of the RUN/SS capacitor during a severe overcurrent and/or short-circuit condition. Foldback current limiting is activated when the output voltage falls below 70% of its nominal level whether or not the short-circuit latchoff circuit is enabled.
3734f
11
LTC3734
APPLICATIO S I FOR ATIO
The basic LTC3734 application circuit is shown in Figure 1 on the first page of this data sheet. External component selection begins with the selection of the inductors based on ripple current requirements and continues with the current sensing resistors using the calculated peak inductor current and/or maximum current limit. Next, the power MOSFET, D1 is selected. The operating frequency and the inductor are chosen based mainly on the amount of ripple current. Finally, C IN is selected for its ability to handle the input ripple current and COUT is chosen with low enough ESR to meet the output ripple voltage and load step specifications. The circuit shown in Figure 1 can be configured for operation up to an input voltage of 28V (limited by the external MOSFETs). RSENSE Selection For Output Current RSENSE is chosen based on the required peak output current. The LTC3734 current comparator has a maximum threshold of 72mV/RSENSE and an input common mode range of SGND to SVCC. The current comparator threshold sets the peak inductor current, yielding a maximum average output current IMAX equal to the peak value less half the peak-to-peak ripple current, IL. Allowing a margin for variations in the LTC3734 and external component values yields: RSENSE = (40mV/IMAX) Operating Frequency The LTC3734 uses a constant frequency architecture with the frequency determined by an internal capacitor. This capacitor is charged by a fixed current plus an additional current which is proportional to the DC voltage applied to the FREQSET pin. The FREQSET voltage is internally set to 1.2V. It is recommended that this pin is actively biased with a resistor divider to prevent noise getting into the system. A graph for the voltage applied to the FREQSET pin vs frequency is given in Figure 2. As the operating frequency is increased the gate drive and switching losses will be higher, reducing efficiency (see Efficiency Considerations). The maximum switching frequency is approximately 550kHz.
OPERATING FREQUENCY (kHz)
12
U
600 550 500 450 400 350 300 250 200 150 100 0 0.5 1.0 1.5 2.0 2.5 FREQSET PIN VOLTAGE (V) 3.0
3734 F02
W
U
U
Figure 2. Operating Frequency vs VFREQSET
Inductor Value Calculation and Output Ripple Current The operating frequency and inductor selection are interrelated in that higher operating frequencies allow the use of smaller inductor and capacitor values. So why would anyone ever choose to operate at lower frequencies with larger components? The answer is efficiency. A higher frequency generally results in lower efficiency because MOSFET gate charge and transition losses increase directly with frequency. In addition to this basic tradeoff, the effect of inductor value on ripple current and low current operation must also be considered. The inductor value has a direct effect on ripple current. The inductor ripple current IL, decreases with higher inductance or frequency and increases with higher VIN:
IL = VOUT fL VOUT 1- VIN
where f is the individual output stage operating frequency. Accepting larger values of IL allows the use of low inductances, but can result in higher output voltage ripple. A reasonable starting point for setting ripple current is IL = 0.4(IOUT), where IOUT is the maximum load current. Remember, the maximum IL occurs at the maximum input voltage. The inductor ripple current is determined by the frequency, inductance, input and output voltages.
3734f
LTC3734
APPLICATIO S I FOR ATIO
Inductor Core Selection
Once the value for L1 is known, the type of inductor must be selected. High efficiency converters generally cannot afford the core loss found in low cost powdered iron cores, forcing the use of more expensive ferrite, molypermalloy, or Kool M(R) cores. Actual core loss is independent of core size for a fixed inductor value, but it is very dependent on inductor type selected. As inductance increases, core losses go down. Unfortunately, increased inductance requires more turns of wire and therefore copper losses will increase. Ferrite designs have very low core loss and are preferred at high switching frequencies, so design goals can concentrate on copper loss and preventing saturation. Ferrite core material saturates "hard," which means that inductance collapses abruptly when the peak design current is exceeded. This results in an abrupt increase in inductor ripple current and consequent output voltage ripple. Do not allow the core to saturate! A variety of inductors designed for high current, low voltage applications are available from manufacturers such as Sumida, Coilcraft, Coiltronics, Toko and Panasonic. Power MOSFET, D1 Selection External power MOSFETs must be selected for output stage with the LTC3734: one N-channel MOSFET for the top (main) switch, and one N-channel MOSFET for the bottom (synchronous) switch. The peak-to-peak drive levels are set by the PVCC voltage. This voltage typically ranges from 4.5V to 7V. Consequently, logic-level threshold MOSFETs must be used in most applications. Pay close attention to the BVDSS specification for the MOSFETs as well; most of the logic-level MOSFETs are limited to 30V or less. Selection criteria for the power MOSFETs include the "ON" resistance RDS(ON), gate charge QG, reverse transfer capacitance CRSS, breakdown voltage BVDSS and maximum continuous drain current ID(MAX). When the LTC3734 operates at continuous mode in a stepdown configuration, the duty cycles for the top and bottom
U
MOSFETs are approximately:
VOUT VIN V - VOUT Bottom MOSFET Duty Cycle = IN VIN Top MOSFET Duty Cycle = (1) (2)
W
U
U
The conduction losses of the top and bottom MOSFETs are therefore: VOUT 2 * (IOUT ) * (1 + * T) * RDS(ON) (3) VIN V -V 2 PCONBOT = IN OUT * (IOUT ) * (1 + * T) (4) VIN * RDS(ON) PCONTOP = where IOUT is the maximum output current at full load, T is the difference between MOSFET operating temperature and room temperature, and is the temperature dependency of RDS(ON). is roughly 0.004/C ~ 0.006/C for low voltage MOSFETs. The power losses of driving the top and bottom MOSFETs are simply: PDRTOP = QG * PVCC * f PDRBOT = QG * PVCC * f (5) (6)
Use QG data at VGS = PVCC in MOSFET data sheets. f is the switching frequency as described previously. Please notice that the above gate driving losses are usually not dissipated by the MOSFETs. Instead they are mainly dissipated on the internal drivers of the LTC3734, if there are no resistors connected between the drive pins (TG, BG) and the gates of the MOSFETs. The calculation of MOSFET switching loss is complicated by several factors including the wide distribution of power MOSFET threshold voltage, the nonlinearity of current rising/falling characteristic and the Miller Effect. Given the data in a typical power MOSFET data sheet, the switching losses of the top and bottom MOSFETs can only be estimated as follows:
Kool M is a registered trademark of Magnetics, Inc.
3734f
13
LTC3734
APPLICATIO S I FOR ATIO
PSWTOP = VIN2 * IOUT * f * CRSS * RDR * 2 1 1 + V -V DR TH(MIN) VTH(MIN) PSWBOT 0
where RDR is the effective driver resistance (of approximately 2), VDR is the driving voltage (= PVCC) and VTH(MIN) is the minimum gate threshold voltage of the MOSFET. Please notice that the switching loss of the bottom MOSFET is effectively negligible because the current conduction of the antiparalleling diode. This effect is often referred as zero-voltage-transition (ZVT). Similarly when the LTC3734 converter works under fully synchronous mode at light load, the reverse inductor current can also go through the body diode of the top MOSFET and make the turn-on loss to be negligible. However, equations 7 and 8 have to be used in calculating the worst-case power loss, which happens at highest load level. The selection criteria of power MOSFETs start with the stress check: VIN < BVDSS IMAX < ID(MAX) and PCONTOP + PSWTOP < top MOSFET maximum power dissipation specification PCONBOT + PSWBOT < bottom MOSFET maximum power dissipation specification The maximum power dissipation allowed for each MOSFET depends heavily on MOSFET manufacturing and packaging, PCB layout and power supply cooling method. Maximum power dissipation data are usually specified in MOSFET data sheets under different PCB mounting conditions. The next step of selecting power MOSFETs is to minimize the overall power loss: POVL = PTOP + PBOT = (PCONTOP + PDRTOP + PSWTOP) + (PCONBOT + PDRBOT + PSWBOT)
14
U
(7) (8)
For typical mobile CPU applications where the ratio between input and output voltages is higher than 2:1, the bottom MOSFET conducts load current most of the time while the main losses of the top MOSFET are for switching and driving. Therefore a low RDS(ON) part (or multiple parts in parallel) would minimize the conduction loss of the bottom MOSFET while a higher RDS(ON) but lower QG and CRSS part would be desirable for the top MOSFET. The Schottky diode, D1 in Figure 1, conducts during the dead-time between the conduction of the top and bottom MOSFETs. This helps reduce the current flowing through the body diode of the bottom MOSFET. A body diode usually has a forward conduction voltage higher than that of a Schottky and is thus detrimental to efficiency. The charge storage and reverse recovery of a body diode also cause high frequency rings at the switching nodes (the conjunction nodes between the top and bottom MOSFETs), which are again not desired for efficiency or EMI. Some power MOSFET manufacturers integrate a Schottky diode with a power MOSFET, eliminating the need to parallel an external Schottky. These integrated Schottky-MOSFETs, however, have smaller MOSFET die sizes than conventional parts and are thus not suitable for high current applications. CIN and COUT Selection In continuous mode, the source current of each top N-channel MOSFET is a square wave of duty cycle VOUT/ VIN. A low ESR input capacitor sized for the maximum RMS current must be used. The RMS input ripple current is estimated to be:
IRMS IOUT (MAX) VOUT VIN VIN -1 VOUT
W
U
U
This formula has a maximum at VIN = 2VOUT, where IRMS = IOUT(MAX)/2 This simple worst-case condition is commonly used for design, considering input/output variations and long term reliability. Note that capacitor manufacturer's ripple current ratings are often based on only 2000 hours of life. This makes it advisable to further derate the capacitor, or to choose a capacitor rated at a higher temperature than
3734f
LTC3734
APPLICATIO S I FOR ATIO
required. Several capacitors may also be paralleled to meet size or height requirements in the design. Always consult the capacitor manufacturer if there is any question. The selection of COUT is driven by the required effective series resistance (ESR). Typically once the ESR requirement has been met, the RMS current rating generally far exceeds the IRIPPLE(P-P) requirements. The steady state output ripple (VOUT) is determined by:
1 VOUT IL ESR + 8fC OUT
Where f = operating frequency of each stage, COUT = output capacitance and IL is inductor peak-to-peak ripple current. The LTC3734 employs OPTI-LOOP technique to compensate the switching regulator loop with external components (through ITH pin). OPTI-LOOP compensation speeds up regulator's transient response, minimizes output capacitance and effectively removes constraints on output capacitor ESR. It opens a much wider selection of output capacitor types and a variety of capacitor manufactures are available for high current, low voltage switching regulators. Manufacturers such as Nichicon, United Chemicon and Sanyo should be considered for high performance through-hole capacitors. The OS-CON semiconductor dielectric capacitor available from Sanyo has the lowest (ESR)(size) product of any aluminum electrolytic at a somewhat higher price. An additional ceramic capacitor in parallel with OS-CON type capacitors is recommended to reduce the inductance effects. In surface mount applications, multiple capacitors may have to be paralleled to meet the ESR or RMS current handling requirements of the application. Aluminum electrolytic and dry tantalum capacitors are both available in surface mount configurations. New special polymer (SP) surface mount capacitors from Panasonic offer very low ESR also but have much lower capacitive density per unit
U
volume. In the case of tantalum, it is critical that the capacitors are surge tested for use in switching power supplies. Several excellent choices are the AVX TPS, AVX TPSV or the KEMET T510 series of surface mount tantalums, available in case heights ranging from 2mm to 4mm. Other capacitor types include Sanyo OS-CON, POSCAPs, Kemet AO-CAPs , Nichicon PL series and Sprague 595D series. Consult the manufacturer for other specific recommendations. A combination of capacitors will often result in maximizing performance and minimizing overall cost and size. PVCC and SVCC Decoupling The PVCC pin supplies power to the bottom gate driver and therefore must be bypassed to power ground with a minimum of 4.7F ceramic or tantalum capacitor. Since the gate driving currents are of high amplitude and high slew rate, this bypassing capacitor should be placed very close to the PVCC and PGND pins to minimize the parasitic inductance. Do NOT apply greater than 7V to the PVCC pin. The SVCC pin supplies current to the internal control circuitry of the LTC3734. This supply current is much lower than that of the current for the external MOSFET gate drive. Ceramic capacitors are very good for high frequency filtering and a 0.1F ~ 1F ceramic capacitor should be placed adjacent to the SVCC and SGND pins. Topside MOSFET Driver Supply (CB,DB) (Refer to Functional Diagram) External bootstrap capacitor CB connected to the BOOST pin supplies the gate drive voltages for the topside MOSFETs. Capacitor CB in the Functional Diagram is charged though diode DB from PVCC when the SW pin is low. When the topside MOSFET turns on, the driver places the CB voltage across the gate-source of the desired MOSFET. This enhances the MOSFET and turns on the topside switch. The switch node voltage, SW, rises to VIN and the BOOST pin rises to VIN + PVCC. The value of the boost capacitor CB needs to be 30 to 100 times that of the total input capacitance of the topside MOSFET(s). The reverse breakdown of DB must be greater than PVCC(MAX).
3734f
W
U
U
15
LTC3734
APPLICATIO S I FOR ATIO
VID Output Voltage Programming
After 27s ~ 71s tBOOT delay, the output voltage of the regulator is digitally programmed as defined in Table 1 using the VID0 to VID5 logic input pins. The VID logic inputs program a precision, 0.25% internal feedback resistive divider. The LTC3734 has an output voltage range of 0.700V to 1.708V in 16mV steps. Refering to the Functional Diagram, there is a resistor, RVID, from VFB to ground. The value of RVID is controlled by the six VID input pins. Another internal resistor, 5.33k (RATTEN), completes the resistive divider. The output voltage is thus set by the ratio of (RVID + 5.33k) to RVID. Each VID digital pin is a high impedance input. Therefore they must be actively pulled high or pulled low. The logic low threshold of the VID pins is 0.3V; the logic high threshold is 0.7V. Soft-Start/Run Function The RUN/SS pin provides three functions: 1) run/shutdown, 2) soft-start and 3) an optional short-circuit latchoff timer. Soft-start reduces the input power source's surge currents by gradually increasing the controller's current limit. The latchoff timer prevents very short, extreme load transients from tripping the overcurrent latch. A small pullup current (>5A) supplied to the RUN/SS pin will prevent the overcurrent latch from operating. The following paragraph describes how the functions operate. An internal 1.5A current source charges up the soft-start capacitor, CSS. When the voltage on RUN/SS reaches 1.5V, the controller is permitted to start operating. As the voltage on RUN/SS increases from 1.5V to 3.0V, the internal current limit is increased from 25mV/RSENSE to 72mV/RSENSE. The output current thus ramps up slowly, eliminating the starting surge current required from the input power supply. If RUN/SS has been pulled all the way to ground there is a delay before starting of approximately:
tDELAY = 1.5V C SS = 1s/F C SS 1.5A
(
)
The time for the output current to ramp up is then:
tIRAMP = 3V - 1.5V C SS = 1s/F C SS 1.5A
(
)
16
U
By pulling the RUN/SS pin below 1V the LTC3734 is put into low current shutdown (IQ < 100A). The RUN/SS pin can be driven directly from logic as shown in Figure 3. Diode D1 in Figure 3 reduces the start delay but allows CSS to ramp up slowly providing the soft-start function. The RUN/SS pin has an internal 6V zener clamp (see Functional Diagram).
PVCC 3.3V OR 5V D1 RUN/SS RSS* RUN/SS CSS CSS
3734 F03
W
U
U
*OPTIONAL TO DEFEAT OVERCURRENT LATCHOFF
Figure 3. RUN/SS Pin Interfacing
Start-Up Sequence (Refer to the Functional Diagram) After soft-start, the output voltage of the regulator settles at a voltage level equal to VBOOT. VBOOT = 0.6V * R2 * R3 + R5
( ) R5 * (R1 + R2)
By using different R5 resistors, VBOOT can be programmed. After the output voltage enters the 10% regulation window centered at VBOOT, the internal power good comparator issues a logic high signal. Refer to the timing diagram in Figure 4. This signal then enters a logic AND gate, with MCH_PG being the other input, and the output of the gate is PG shown in Figure 4. This composite PG signal is then delayed by tBOOT amount of time and then becomes MD. As soon as MD is asserted, the output voltage changes from VBOOT to VVID, a voltage level totally controlled by the six VID bits. In the LTC3734, the time tBOOT is set to be 15 switching cycles:
tBOOT = 15 1 fS
If fS is set at 210kHz, tBOOT = 71s If fS is set at 550kHz, tBOOT = 27s
3734f
LTC3734
APPLICATIO S I FOR ATIO
RUN/SS 1.5V VVID
VBOOT VOUT 90% VBOOT INTERNAL PG (OUTPUT OF INTERNAL POWER GOOD COMPARATOR)
MCH_PG
COMPOSITE PG (=(INTERNAL PG) AND (MCH_PG))
MD
tBOOT
VALID VID BITS INVALID
TIME
3734 F04
Figure 4. Start-Up Timing Diagram
Output Voltage Set in Deep Sleep and Deeper Sleep States (Refer to the Functional Diagram) The output voltage can be offset by the STP_CPUB signal. When STP_CPUB becomes low, the output voltage will be a certain percentage lower than that set by the VID bits in Table 1. This state is defined to be the deep sleep state. Referring to the Functional Diagram, we can calculate the STP_CPUB offset to be: STP% = - R3 * 100% R3 + R4
By using different R4 resistors, STP_CPUB offset can be programmed. The output voltage could also be set by external resistors R4 and R6 when DPRSLPVR input is high. This state is defined to be the deeper sleep state. The output voltage is set to VDPRSLPVR, regardless of the VID setting:
VDPRSLPVR = 0.6V *
(R6 R4) * (R1+ R2)
R2 * R3 + R6 R4
(
)
Where R6||R4 is the parallel combination of R4 and R6.
U
By using different value R6 resistors, VDPRSLPVR can be programmed. (The digital input threshold voltage is 1.8V for STP_CPUB, DPRSLPVR and MCH_PG inputs.) Power Good Masking The PGOOD output monitors VOUT. When VOUT is not within 10% of the set point, PGOOD is pulled low with an internal MOSFET. When VOUT is within the regulation window, PGOOD is of high impedance. PGOOD should be pulled up by an external resistor. During VID changes, deep sleep and deeper sleep transitions, the output voltage can initially be out of the 10% window of the newly set regulation point. To avoid nuisance indications from PGOOD, a timer masks PGOOD for 110s. If output is still out of regulation after this blanking time, PGOOD goes low. Any overvoltage or undervoltage condition is also masked for 110s before it is reported by PGOOD. The masking circuitry also adaptively tracks VID and state changes. If a new change in VID or state happens before the 110s masking timer expires, the timer resets and starts a fresh count of 110s. This prevents the system from rebooting under frequent output voltage transitions. Refer to Figure 5 for the PGOOD timing diagram. During start up, PGOOD is actively pulled low until the RUN/SS pin voltage reaches its arming voltage, which is
VID BITS VOUT INTERNAL PG (OUTPUT OF INTERNAL POWER GOOD COMPARATOR) PGOOD MASKING 110s 110s PGOOD
3734 F05
W
U
U
TIME
Figure 5. PGOOD Timing Diagram
3734f
17
LTC3734
APPLICATIO S I FOR ATIO
Table 1. VID Output Voltage Programming
VID5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VID4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VID3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 VID2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 VID1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 VID0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
4.2V typically. Only then is the PGOOD pull-low signal released. When RUN/SS goes low, PGOOD goes low simultaneously. Fault Conditions: Overcurrent Latchoff The RUN/SS pin also provides the ability to latch off the controller when an overcurrent condition is detected. The
18
U
LTC3734 1.708V 1.692V 1.676V 1.660V 1.644V 1.628V 1.612V 1.596V 1.580V 1.564V 1.548V 1.532V 1.516V 1.500V 1.484V 1.468V 1.452V 1.436V 1.420V 1.404V 1.388V 1.372V 1.356V 1.340V 1.324V 1.308V 1.292V 1.276V 1.260V 1.244V 1.228V 1.212V VID5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VID4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VID3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 VID2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 VID1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 VID0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 LTC3734 1.196V 1.180V 1.164V 1.148V 1.132V 1.116V 1.100V 1.084V 1.068V 1.052V 1.036V 1.020V 1.004V 0.988V 0.972V 0.956V 0.940V 0.924V 0.908V 0.892V 0.876V 0.860V 0.844V 0.828V 0.812V 0.796V 0.780V 0.764V 0.748V 0.732V 0.716V 0.700V
W
U
U
RUN/SS capacitor, CSS, is used initially to limit the inrush current. After the controller has been started and been given adequate time to charge up the output capacitors and provide full load current, the RUN/SS capacitor is used for a short-circuit timer. If the output voltage falls to less than 70% of its nominal value after CSS reaches 4.2V, CSS begins discharging on the assumption that the output is in an overcurrent condition. If the condition lasts for a long
3734f
LTC3734
APPLICATIO S I FOR ATIO
enough period as determined by the size of the CSS, the controller will be shut down until the RUN/SS pin voltage is recycled. If the overload occurs during start-up, the time can be approximated by: tLO1 (CSS * 0.7V)/(1.5A) = 4.6 * 105 (CSS) If the overload occurs after start-up, the voltage on CSS will continue charging and will provide additional time before latching off: tLO2 (CSS * 2V)/(1.5A) = 1.3 * 106 (CSS) This built-in overcurrent latchoff can be overridden by providing a pull-up resistor, RSS, to the RUN/SS pin as shown in Figure 3. This resistance shortens the soft-start period and prevents the discharge of the RUN/SS capacitor during a severe overcurrent and/or short-circuit condition. When deriving the 5A current from PVCC as in the figure, current latchoff is always defeated. Why should you defeat current latchoff? During the prototyping stage of a design, there may be a problem with noise pickup or poor layout causing the protection circuit to latch off the controller. Defeating this feature allows troubleshooting of the circuit and PC layout. The internal short-circuit and foldback current limiting still remains active, thereby protecting the power supply system from failure. A decision can be made after the design is complete whether to rely solely on foldback current limiting or to enable the latchoff feature by removing the pull-up resistor. The value of the soft-start capacitor CSS may need to be scaled with output voltage, output capacitance and load current characteristics. The minimum soft-start capacitance is given by: CSS > (COUT )(VOUT)(10-4)(RSENSE) A recommended soft-start capacitor of CSS = 0.1F will be sufficient for most applications. Minimum On-Time Considerations Minimum on-time, tON(MIN), is the smallest time duration that the LTC3734 is capable of turning on the top MOSFET. It is determined by internal timing delays and the gate
U
charge required to turn on the top MOSFET. Low duty cycle applications may approach this minimum on-time limit and care should be taken to ensure that:
tON(MIN) < VOUT VIN f
W
U
U
()
If the duty cycle falls below what can be accommodated by the minimum on-time, the LTC3734 will begin to skip cycles resulting in variable frequency operation. The output voltage will continue to be regulated, but the ripple current and ripple voltage will increase. The minimum on-time for the LTC3734 is generally less than 150ns. However, as the peak sense voltage decreases, the minimum on-time gradually increases. This is of particular concern in forced continuous applications with low ripple current at light loads. If the duty cycle drops below the minimum on-time limit in this situation, a significant amount of cycle skipping can occur with correspondingly larger ripple current and ripple voltage. If an application can operate close to the minimum on-time limit, an inductor must be chosen that has a low enough inductance to provide sufficient ripple amplitude to meet the minimum on-time requirement. As a general rule, keep the inductor ripple current equal to or greater than 15% of IOUT(MAX) at VIN(MAX). Active Voltage Positioning Active voltage positioning can be used to minimize peakto-peak output voltage excursion under worst-case transient loading conditions. The open-loop DC gain of the control loop is reduced depending upon the maximum load step specifications. Active voltage positioning can easily be added to the LTC3734. Figure 6 shows the equivalent circuit for implementing AVP. The load line slope is estimated to be: AVP -35.5 * RSENSE R3 * , m RAVP V if gm * R3 > 10 * OUT 0.6 V (9)
3734f
19
LTC3734
APPLICATIO S I FOR ATIO
where AVP is the slope, in mV/A RSENSE is the current sense resistor
m is the number of phases, m = 1 for LTC3734 R3 and RAVP are defined in Figure 6 gm is the transconductance gain for the error amplifier, it is about 4.5mmho for LTC3734.
VOUT+ R3 RAVP
VOA+ R2 R1 VOA-
+
OAOUT
-
FB VID 0.6V
- +
ITH
3735 F09
Figure 6. Simplified Schematic Diagram for AVP Design in LTC3734
Rewriting equation (9) we can estimate the AVP resistor to be: RAVP 35.5 * R3 * RSENSE m * | AVP | (10)
We also adopt the current sense resistors as part of voltage positioning slopes. So the total load line slope is estimated to be:
AVP -35.5 *
RSENSE R3 R * - SENSE , m RAVP m V if gm * R3 >> OUT 0.6V
20
U
Rewriting this equation, we can estimate the RAVP value to be:
W
U
U
RAVP
35.5 * R3 m * | AVP | -1 RSENSE
(12)
Typically the calculation results based on these equations have 10% tolerance. So the resistor values need to be fine tuned. Efficiency Considerations The percent efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Percent efficiency can be expressed as: %Efficiency = 100% - (L1 + L2 + L3 + ...) where L1, L2, etc. are the individual losses as a percentage of input power. Although all dissipative elements in the circuit produce losses, four main sources usually account for most of the losses in LTC3734 circuits: 1) I2R losses, 2) Topside MOSFET transition losses, 3) PVCC supply current and 4) CIN loss. 1) I2R losses are predicted from the DC resistances of the fuse (if used), MOSFET, inductor, and current sense resistor. In continuous mode the average output current flows through L and RSENSE, but is "chopped" between the topside MOSFET and the synchronous MOSFET. If the two MOSFETs have approximately the same RDS(ON), then the resistance of one MOSFET can simply be summed with the resistances of L, RSENSE and ESR to obtain I2R losses. For example, if each RDS(ON) = 10m, RL = 10m, and RSENSE = 5m, then the total resistance is 25m. This results in losses ranging from 2% to 8% as the output current increases from 3A to 15A per output stage for a 5V output, or a 3% to 12% loss per output stage for a 3.3V output.
(11)
3734f
LTC3734
APPLICATIO S I FOR ATIO
Efficiency varies as the inverse square of VOUT for the same external components and output power level. The combined effects of increasingly lower output voltages and higher currents required by high performance digital systems is not doubling but quadrupling the importance of loss terms in the switching regulator system! 2) Transition losses apply only to the topside MOSFET(s), and are significant only when operating at high input voltages (typically 12V or greater). Transition losses can be estimated from:
Transition Loss = VIN2 * IOUT * f * CRSS * RDR * 2 1 1 + V -V DR TH(MIN) VTH(MIN)
3) PVCC drives both top and bottom MOSFETs. The MOSFET driver current results from switching the gate capacitance of the power MOSFETs. Each time a MOSFET gate is switched from low to high to low again, a packet of charge dQ moves from PVCC to ground. The resulting dQ/dt is a current out of PVCC that is typically much larger than the control circuit current. In continuous mode, IGATECHG = (QT + QB)f, where QT and QB are the gate charges of the topside and bottom side MOSFETs and f is the switching frequency. 4) The input capacitor has the difficult job of filtering the large RMS input current to the regulator. It must have a very low ESR to minimize the AC I2R loss and sufficient capacitance to prevent the RMS current from causing additional upstream losses in fuses or batteries. Other losses, including COUT ESR loss, Schottky diode conduction loss during dead time, inductor core loss and internal control circuitry supply current generally account for less than 2% additional loss. Checking Transient Response The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in DC (resistive) load current. When a load step occurs, VOUT shifts by an amount equal to ILOAD(ESR), where ESR is the effective
U
series resistance of COUT. ILOAD also begins to charge or discharge COUT generating the feedback error signal that forces the regulator to adapt to the current change and return VOUT to its steady-state value. During this recovery time VOUT can be monitored for excessive overshoot or ringing, which would indicate a stability problem. The availability of the ITH pin not only allows optimization of control loop behavior but also provides a DC coupled and AC filtered closed loop response test point. The DC step, rise time, and settling at this test point truly reflects the closed loop response. Assuming a predominantly second order system, phase margin and/or damping factor can be estimated using the percentage of overshoot seen at this pin. The bandwidth can also be estimated by examining the rise time at the pin. The ITH external components shown in the Figure 1 circuit will provide an adequate starting point for most applications. The ITH series RC-CC filter sets the dominant pole-zero loop compensation. The values can be modified slightly (from 0.2 to 5 times their suggested values) to optimize transient response once the final PC layout is done and the particular output capacitor type and value have been determined. The output capacitors need to be decided upon first because the various types and values determine the loop gain and phase. An output current pulse of 20% to 80% of full-load current having a rise time of <1s will produce output voltage and ITH pin waveforms that will give a sense of the overall loop stability without breaking the feedback loop. The initial output voltage step resulting from the step change in output current may not be within the bandwidth of the feedback loop, so this signal cannot be used to determine phase margin. This is why it is better to look at the ITH pin signal which is in the feedback loop and is the filtered and compensated control loop response. The gain of the loop will be increased by increasing RC and the bandwidth of the loop will be increased by decreasing CC. If RC is increased by the same factor that CC is decreased, the zero frequency will be kept the same, thereby keeping the phase the same in the most critical frequency range of the feedback loop. The output voltage settling behavior is related to the stability of the closed-loop system and will demonstrate the actual overall supply performance.
3734f
W
U
U
21
LTC3734
APPLICATIO S I FOR ATIO
Automotive Considerations: Plugging into the Cigarette Lighter As battery-powered devices go mobile, there is a natural interest in plugging into the cigarette lighter in order to conserve or even recharge battery packs during operation. But before you connect, be advised: you are plugging into the supply from hell. The main battery line in an automobile is the source of a number of nasty potential transients, including load-dump, reverse-battery and double-battery. Load-dump is the result of a loose battery cable. When the cable breaks connection, the field collapse in the alternator can cause a positive spike as high as 60V which takes several hundred milliseconds to decay. Reverse-battery is just what it says, while double-battery is a consequence of tow truck operators finding that a 24V jump start cranks cold engines faster than 12V. The network shown in Figure 7 is the most straightforward approach to protect a DC/DC converter from the ravages of an automotive power line. The series diode prevents current from flowing during reverse-battery, while the transient suppressor clamps the input voltage during load-dump. Note that the transient suppressor should not conduct during double-battery operation, but must still clamp the input voltage below breakdown of the converter. Although the LTC3734 has a maximum input voltage of 32V, most applications will be limited to 30V by the MOSFET BVDSS.
VBAT 12V
PVCC PVCC LTC3734
+
3734 F07
Figure 7. Automotive Application Protection
22
U
Design Example As a design example, assume VIN = 12V (nominal), VIN = 21V (max), VOUT = 1.5V, IMAX = 20A, and f = 350kHz. The inductance value is chosen first based on a 40% ripple current assumption. The highest value of ripple current occurs at the maximum input voltage. The minimum inductance for 40% ripple current is: L VOUT VOUT 1.5V * 1- * = f * I VIN 350kHz * 40%* 20A 1.5V 1- = 0.5H 21V
W
U
U
(
)
The peak inductor current will be the maximum DC current plus one half of the ripple current, or 24A. Tie the FREQSET pin to 1.2V, resistively divided down from SVCC to have 350kHz operation. The minimum on-time also occurs at maximum input voltage:
tON(MIN) = 1.5V VOUT = = 204ns VIN * f 21V * 350kHz
which is larger than 150ns, the typical minimum on time of the LTC3734. RSENSE can be calculated by using a conservative maximum sense voltage threshold of 40mV and taking into account of the peak current: RSENSE = 40mV = 0.002 24A
The power loss dissipated by the top MOSFET can be calculated with equations 3 and 7. Using a Fairchild FDS7760 as an example: RDS(ON) = 8m, QG = 55nC at 5V VGS, CRSS = 307pF, VTH(MIN) = 1V. At maximum input
3734f
LTC3734
APPLICATIO S I FOR ATIO
voltage with TJ(estimated) = 85C at an elevated ambient temperature: PTOP = 1.5V * 20 A2 * 1 + 0.005 * (85C - 25C) * 21V 20 A 0.008 + 21V2 * * 350kHz * 307pF * 2 1 1 2 * + = 1.48W 5V - 1V 1V
(
Equation 4 gives the worst-case power loss dissipated by the bottom MOSFET (assuming FDS7760 and TJ = 85C again): PBOT = 21V - 1.5V * 20A2 * 21V 1 + 0.005 * 85C - 25C * 0.008
= 3.86W
(
(
))
Therefore, it is necessary to have two FDS7760s in parallel to split the power loss for both the top and bottom MOSFETS. A short-circuit to ground will result in a folded back current of about:
ISC =
25mV 1 200ns * 21V + * = 16.7A 0.002 2 0.5H
U
The worst-case power dissipation by the bottom MOSFET under short-circuit conditions is:
1 - 200ns 350kHz * 16.7A2 * = 1 350kHz 1 + 0.005 * 85C - 25C * 0.008 = 2.7 W
W
U
U
)
PBOT
(
(
))
which is less than normal, full load conditions. The RMS input ripple current will be: IINRMS = 20A/2 = 10A An input capacitor(s) with a 10A RMS current rating is required. The output capacitor ripple current is calculated. The output ripple will be highest at the maximum input voltage:
IOUT (MAX) =
1.5 1.5V * 1- = 8AP-P 350kHz * 0.5H 2.1
Assuming the ESR of output capacitor(s) is 5m, the output ripple voltage is:
1 VOUT 8AP-P 5m + 8 * 350kHz * 4 * 270F = 42.6mVP-P
(
)

3734f
23
LTC3734
APPLICATIO S I FOR ATIO
PC Board Layout Checklist
When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC3734. Check the following in your layout: 1) Are the signal and power grounds segregated? Keep the SGND at one end of a PC board to prevent MOSFET currents from traveling under the IC. The IC signal ground pin (Pin 5) should be used to hook up all control circuitry on one side of the IC, routing the copper through SGND, under the IC covering the "shadow" of the package, connecting to the PGND pin (Pin 20) and then continuing on to the (-) plate of COUT. 2) Is the PVCC decoupling capacitor connected immediately adjacent to the PVCC and PGND pins? A 1F ceramic capacitor of the X7R or X5R material is small enough to fit very close to the IC to minimize the ill effects of the large current pulses drawn to drive the power MOSFETs. An additional 4.7F ~ 10F of ceramic, tantalum or other low ESR capacitor is recommended in order to keep PVCC stable. The power ground returns to the sources of the bottom N-channel MOSFETs, anodes of the Schottky diodes, and (-) plates of CIN, which should have the shortest trace length possible. 3) Are the SENSE - and SENSE + leads routed together with minimum PC trace spacing? The filter capacitors between SENSE + and SENSE - pin pairs should be as close as possible to the LTC3734. Ensure accurate current sensing with Kelvin connections at the current sense resistor. See Figure 8.
TRACE TO INDUCTOR
Figure 8. Proper Current Sense Connections
3734f
24
U
4) Does the (+) plate of CIN connect to the drains of the topside MOSFETs as closely as possible? This capacitor provides the AC current to the MOSFETs. Keep the input current path formed by the input capacitor, top and bottom MOSFETs, and the Schottky diode on the same side of the PC board in a tight loop to minimize conducted and radiated EMI. 5) Keep the "noisy" nodes, SW, BOOST, TG and BG away from sensitive small-signal nodes. Ideally the switch nodes should be placed at the furthest point from the LTC3734. It is critical to keep the high-switching-current paths to a small physical size. High electric and magnetic fields will radiate from these "loops" just as radio stations transmit signals. The output capacitor ground should return to the negative terminal of the input capacitor and not share a common ground path with any switched current paths. The left half of the circuit gives rise to the "noise" generated by a switching regulator. The ground terminations of the sychronous MOSFETs and Schottky diodes should return to the negative plate(s) of the input capacitor(s) with a short isolated PC trace since very high switched currents are present. A separate isolated path from the negative plate(s) of the input capacitor(s) should be used to tie in the IC power ground pin (PGND) and the signal ground pin (SGND). This technique keeps inherent signals generated by high current pulses from taking alternate current paths that have finite impedances during the total period of the switching regulator. External OPTI-LOOP compensation allows overcompensation for PC layouts which are not optimized but this is not the recommended design procedure.
PADS OF SENSE RESISTOR TRACE TO OUTPUT CAP (+)
3734 F08
W
U
U
SENSE +
SENSE -
LTC3734
TYPICAL APPLICATIO
Figure 9 shows a typical application using the LTC3734 to power the mobile CPU core. The input can vary from 5V to 24V; the output voltage can be programmed from 0.7V to 1.708V with a maximum current of 20A. By only modifying the external MOSFET and inductor selection, higher load current capability can be achieved. The power supply in Figure 9 receives a VRON signal for ON/OFF control. After soft-start, the output voltage is set at 1.2V until the assertion of the MCH_PG signal. After about a 50s delay, the VID5-VID0 bits gain the control over the output voltage and program it between 0.7V and
U
1.708V. When the STP_CPUB signal is low, a deep sleep state is indicated and the output voltage is decreased by about 1.04%. When the DPRSLPVR signal is high, a deeper sleep state is indicated and the output voltage becomes 0.748V regardless of the states of the VID bits. Active voltage positioning is accomplished with a resistive divider across the ITH pin. Lower resistance yields a steeper AVP slope while higher resistance provides a flatter slope. Finally, the PGOOD output is masked for 110s during VID change or state transition.
3734f
25
LTC3734
TYPICAL APPLICATIO
3.3V 2k PGOOD 5V 1000pF 100k VID0 Si1034X VRON VID1 VID2 VID3 VOA+ 1M 1% 100pF 680pF 3k 1M 470pF 1F X5R 5V 4.7F X5R VOUT 100pF VID4 VID5 MCH_PG DPRSLPVR STP_CPUB PSIB 27 30 4 32 31 13 14 15 17 18 19 26 11 10 5 28 22 25 MCH_PG DPRSLPVR STP_CPUB PSIB FREQSET VID0 VID1 VID2 VID3 VID4 VID5 PGOOD ITH RUN/SS SGND VFB PVCC BOOST SVCC 29 5V 0.1F X5R RBOOT RDPRSLP RDPSLP VOA+ OAOUT VOA
-
BAT54 SW 0.47F
3.3V 249k 1M PGOOD 2k
Figure 9. 5V to 24V Input, 0.7V to 1.708V Output, 20A IMVP-IV Compatible Power Supply
26
U
TG SW BG PGND SENSE + 24 23 21 20 6 1nF 10 10 VOUT 0.7V TO 1.708V AT 20A Q2 D1 Q1 1F L1 0.8H 0.002 VIN 5V TO 24V C1 10F x5 35V X5R 7 SENSE - LTC3734 RBOOT 12 8 9 1 3 2 1.27M 13.3k 56.2k 1.27M VOA+ C5: PANASONIC SP EEFSX0R181R OR SANYO POSCAP 2R5TPE220MG D1: B340A L1: SUMIDA CEP125-0R8 Q1: IRF7811W(SO8) OR FDS7860DP Q2: IRF7811W OR FDS7856DP(SO8) x2
+
1F 12.7k 1% 13.3k
C5 270F x3 2V
CLKEN#
3.3V 1.9k
2N7002 MMBT3904 80.6k RBOOT 1F
4.12k 43.2k
IMPV4_PG MMBT3904
VRON OPTIONAL INTERFACES
3734 F09
3734f
LTC3734
PACKAGE DESCRIPTIO
5.50 0.05 4.10 0.05 3.45 0.05 (4 SIDES)
RECOMMENDED SOLDER PAD LAYOUT 5.00 0.10 (4 SIDES) PIN 1 TOP MARK (NOTE 6) 0.75 0.05 0.00 - 0.05
NOTE: 1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE M0-220 VARIATION WHHD-(X) (TO BE APPROVED) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
U
UH Package 32-Lead Plastic QFN (5mm x 5mm)
(Reference LTC DWG # 05-08-1693)
0.70 0.05 PACKAGE OUTLINE 0.25 0.05 0.50 BSC BOTTOM VIEW--EXPOSED PAD R = 0.115 TYP 31 32 0.40 0.10 1 2 0.23 TYP (4 SIDES) 3.45 0.10 (4-SIDES)
(UH) QFN 0603
0.200 REF
0.25 0.05 0.50 BSC
3734f
27
LTC3734 RELATED PARTS
DESCRIPTION High Power Step-Down Synchronous DC/DC Controller in SO-8 LTC1628/LTC1628-PG/ 2-Phase, Dual Output Synchronous Step-Down LTC1628-SYNC DC/DC Controllers LTC1629/ 20A to 200A PolyPhase Synchronous Controllers LTC1629-PG LTC1702 No RSENSETM 2-Phase Dual Synchronous Step-Down Controller LTC1703 No RSENSE 2-Phase Dual Synchronous Step-Down Controller with 5-Bit Mobile VID Control LTC1708-PG 2-Phase, Dual Synchronous Controller with Mobile VID (R) LT 1709/ High Efficiency, 2-Phase Synchronous Step-Down LT1709-8 Switching Regulators with 5-Bit VID LTC1735 High Efficiency Synchronous Step-Down Switching Regulator LTC1736 High Efficiency Synchronous Controller with 5-Bit Mobile VID Control LTC1778 No RSENSE Current Mode Synchronous Step-Down Controller LTC1929/ 2-Phase Synchronous Controllers LTC1929-PG LTC3711 No RSENSE Current Mode Synchronous Step-Down Controller with Digital 5-Bit Interface LTC3729 20A to 200A, 550kHz PolyPhase Synchronous Controller LTC3730 LTC3731 LTC3735 3-Phase, 5-Bit Intel Mobile VID 600kHz Synchronous Step-Down Controller 3-Phase 600kHz Synchronous Step-Down Controller PART NUMBER LTC1530 COMMENTS High Efficiency 5V to 3.3V Conversion at Up to 15A Reduces CIN and COUT, Power Good Output Signal, Synchronizable, 3.5V VIN 36V, IOUT up to 20A, 0.8V VOUT 5V Expandable from 2-Phase to 12-Phase, Uses All Surface Mount Components, No Heat Sink, VIN up to 36V 550kHz, No Sense Resistor Mobile Pentium(R) III Processors, 550kHz, VIN 7V 3.5V VIN 36V, VID Sets VOUT1, PGOOD 1.3V VOUT 3.5V, Current Mode Ensures Accurate Current Sharing, 3.5V VIN 36V Output Fault Protection, 16-Pin SSOP Output Fault Protection, 24-Pin SSOP, 3.5V VIN 36V Up to 97% Efficiency, 4V VIN 36V, 0.8V VOUT (0.9)(VIN), IOUT up to 20A Up to 42A, Uses All Surface Mount Components, No Heat Sinks, 3.5V VIN 36V Up to 97% Efficiency, Ideal for Pentium III Processors, 0.925V VOUT 2V, 4V VIN 36V, IOUT up to 20A Expandable from 2-Phase to 12-Phase, Uses all Surface Mount Components, VIN up to 36V 0.6V VOUT 1.75V, IMVP3 Compatible Up to 60A Output Current, Integrated MOSFET Drivers 0.6V VOUT 6V, 4.5V VIN 32V IOUT up to 60A, Integrated MOSFET Drivers 40A, 0.7V VOUT 1.708V, 4V VIN 30V
2-Phase DC/DC Controller for Pentium (Centrino) Processors No RSENSE is a trademark of Linear Technology Corporation. Pentium is a registered trademark of Intel Corporation.
3734f
28
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
LT/TP 1003 1K * PRINTED IN USA
FAX: (408) 434-0507 www.linear.com
(c) LINEAR TECHNOLOGY CORPORATION 2002


▲Up To Search▲   

 
Price & Availability of LTC1929

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X